If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-8=64x
We move all terms to the left:
8x^2-8-(64x)=0
a = 8; b = -64; c = -8;
Δ = b2-4ac
Δ = -642-4·8·(-8)
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{17}}{2*8}=\frac{64-16\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{17}}{2*8}=\frac{64+16\sqrt{17}}{16} $
| 3z-7=-2+3 | | 11x=99*4 | | 3/4x-4=29 | | 11/4=99/x | | 27-x+5=13 | | 10x+11+79=180 | | 2x+10=2x+9 | | -5x-7+6x-12=10x+15 | | 1-5x=x+25 | | 5d^2–22d+8=0 | | -3x-6=-9(x-2) | | 2z-4z=6. | | 7n+4n-16=72 | | -x+10=6x-11 | | 2(8×-5)=4x+10 | | 3^(2x+1)*3^(x)=243 | | ^(2x+1)*3^(x)=243 | | (2x-8)=(3x-28) | | 2/3w=8/9 | | (27x+3-9x-5)/2=10x-2 | | 6-12=w/8 | | (9-x)(3x-1)=0 | | −2x^2+8x+13=0 | | X+3+2y=800 | | (2x-4)=(3x-23) | | 2a-9a=3 | | 0.19(y−2)+0.04y=0.03y−0.30 | | 8+x=3x+26 | | L(s)=-2/3 | | X+13=3x+7 | | 5^64+20=t | | F(s)=-2/3 |